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The steady incompressible Navier–Stokes equations in three dimensions are solved
for neutral and stably stratified flow past three-dimensional obstacles of increasing
spanwise width. The continuous equations are approximated using a finite volume
discretisation on staggered grids with a flux-limited monotonic scheme for the advec-
tive terms. The discrete equations which arise are solved using a nonlinear multigrid
algorithm with up to four grid levels using the SIMPLE pressure correction method as
smoother. When at its most effective the multigrid algorithm is demonstrated to yield
convergence rates which are independent of the grid density. However, it is found
that the asymptotic convergence rate depends on the choice of the limiter used for the
advective terms of the density equation, and some commonly used schemes are inves-
tigated. The variation with obstacle width of the influence of the stratification on the
flow field is described and the results of the three-dimensional computations are com-
pared with those of the corresponding computation of flow over a two-dimensional
obstacle (of effectively infinite width). Also given are the results of time-dependent
computations for three-dimensional flows under conditions of strong static stability
when lee-wave propagation is present and the multigrid algorithm is used to compute
the flow at each time step. c© 2001 Academic Press
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1. INTRODUCTION

The solution of the incompressible Navier–Stokes equations for flows past three-dimensi-
onal obstacles has important applications in many branches of fluid dynamics and beyond.
This paper describes the recent development of a nonlinear multigrid algorithm for three-
dimensional flows in finite depth with buoyancy effects and extends earlier work for stratified
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flows in two dimensions. The algorithm is capable of dealing with three-dimensional flows
which may be neutral or density-stratified, steady or time-dependent, low or high Reynolds
number, and in Cartesian or curvilinear geometry. Of the many methods proposed for gen-
erating solutions to the incompressible Navier–Stokes equations we continue to concentrate
on the method of the finite volume formulation, which is appealing because of its relative
simplicity and generality. Although the applications described here are primarily of mete-
orological interest, the procedures have wider relevance in the general area of numerical
methods for incompressible flow.

Common to all implementations of the finite volume formulation is a conservative dis-
crete approximation to the continuous steady-state equations, which may use staggered or
collocated grids, and flux evaluations for advective terms on cell faces which may be lim-
ited in some manner to prevent unphysical effects. A convergent iterative procedure is then
used to determine the solution to this set of discrete equations and these fall into several
classes. Historically, the first is Chorin’s [1] artificial compressibility method, whereby the
time-dependent terms in the momentum equations are retained and a fictitious compressi-
bility term is introduced into the continuity equation. This renders the system hyperbolic
and an algorithm which advances the solution in pseudo-time to approach the steady state
can be applied. For such problems time accuracy is unimportant and techniques such as
preconditioning, local time-stepping, and multigrid can be used to accelerate convergence.
For genuinely unsteady problems a dual time-stepping approach is adopted in which the
physical time derivatives become source terms and the iteration in pseudo-time used to reach
a steady state at each physical time step. See [2, 3] for recent applications with multigrid in
three dimensions for steady and unsteady flow, respectively.

A second class of procedures consists of decoupled or segregated methods, dating back
to Harlow and Welch [4] for unsteady flows and to Patankar [5] for steady flows, respec-
tively. Starting from a given global pressure field the global velocity field is updated through
the momentum equations. In pressure-based methods relationships between velocity and
pressure corrections are used in the continuity equation to derive a Poisson equation for the
pressure corrections with the current continuity residual on the right-hand side. Although
originally implemented on staggered grids, similar schemes can be derived for collocated
arrangements by the inclusion of appropriate additional terms [6]. Following the solution of
this equation both pressure and velocity fields are updated globally and after the treatment
of any other transport equations the iteration is repeated. Embedding the procedure within a
nonlinear multigrid algorithm accelerates the convergence considerably [7–11]. The modi-
fications required for unsteady flow are similar to those for artificial compressibility, where
the time-derivative terms are included as modifications to the diagonal elements and the
source terms of the discrete momentum equations, and the iteration seeks a steady solution
at each time step. The recent comparison of the pressure-based approach with that of artifi-
cial compressibility for three-dimensional flows [12, 13] noted an efficiency disadvantage
for the pressure correction method for steady flow and a gain for unsteady flow, although
these conclusions applied only to the single-grid implementations investigated.

A third class of methods is similar to the second in that the steady-state equations are
solved directly but with a solution procedure based on a coupling of the equation set.
Vanka’s SCGS (symmetric coupled Gauss–Seidel) method allied with a multigrid algorithm
in two [14] and three dimensions [15] is the earliest example of this kind of approach. The
convergence rates given by cellwise coupling deteriorate for high aspect ratio grids or
aligned flow and coupling in lines [16, 17] is to be preferred. In both of these cases the
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relatively simple matrix structure enables exact inversion, but these methods are likely to
be inefficient if strong anisotropy is present in two spatial directions. Improvement may be
gained by generalizing the approach to solving the fully coupled equation set over planes and
employing algorithms such as Krylov subspace methods in combination with the multigrid
[18–20].

A fourth class of algorithms consists of distributive relaxation methods such as DGS
(distributive Gauss–Seidel) [21–23], where an equivalent system of equations is obtained in
terms of new variables using a distribution operator. Gauss–Seidel relaxation is used for each
equation for each new variable in turn, introducing the changes in the original variables
implied by the distribution operator. This means that following the usual relaxation of
the momentum equations the continuity equation is relaxed by changing several values
together.

The approach taken here is a straightforward extension of that described in [10], where
the primitive variables are defined on staggered grids and the discrete equations which arise
from the finite volume formulation are solved using a nonlinear multigrid method with an
appropriate smoother. The issue of the choice of smoother was addressed in [24], where
a comparison was made of multigrid computation of flow over two-dimensional obstacles
as well as the test problem of the two-dimensional lid-driven cavity. The computing times
for the coupled methods SCGS [14] and CLGS (collective line Gauss–Seidel) [16] were
compared with those of the SIMPLE (semi-implicit method for pressure linked equations)
[5] pressure correction smoother. Although the coupled methods were faster for the two-
dimensional cavity, concurring with [25, 26], the converse was found to be the case for
the flow over the two-dimensional obstacles. A recent comparison of the three-dimensional
lid-driven cavity [27] with the two-dimensional cavity drew the same conclusion, and the
line-coupled method was optimal.

The smoother used here is the SIMPLE pressure correction method, because early nu-
merical experiments suggested that it was faster for three-dimensional flows over obstacles
than the coupled line smoother CLGS. (It may be that CLGS is not the best available—the
algorithm [17], for example, appears well suited to inflow–outflow as well as recirculating
flow problems, although comparison with it is outside the scope of this paper.) The perfor-
mance of SIMPLE for these three-dimensional flows is compared with that observed when
used for the corresponding two-dimensional problem. The benefit of multigrid, in terms of
a reduction in computing time over the corresponding single grid computation, increases
with grid size (the number of nodes). It is a matter of practical interest to determine what
might be expected in three dimensions given that the grid sizes tend to be smaller in each
direction.

The main focus of the paper, however, is the computation of density-stratified flow, re-
quiring the addition of a scalar density transport equation and corresponding buoyancy term
in the vertical momentum equation. Because the Schmidt number (the ratio of viscous to
diffusive effects) varies according to the fluid under consideration, a robust multigrid algo-
rithm which converges well is required, particularly for convection-dominated problems.
In addition, it is well known that unless a flux-limited scheme is implemented, undershoots
can occur and may lead to unphysical phenomena such as negative densities. Prior to the
work described here, only one kind of limiter had been used and although no convergence
difficulties had been encountered in neutral flow, it was noticed that asymptotic convergence
was often harder to obtain in stratified flow. Remedies suggested in [24] included using a
double discretisation, whereby the high-order part of the scheme was not included in the
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iteration on the coarser grids. Although this improved the asymptotic convergence in the
two-dimensional flows tried, it did not appear to help with subsequent initial computations of
stratified flow in three dimensions. This prompted the investigation of several well-known
limiter functions on convergence rates which is included here. The best of these is then
deployed in the multigrid algorithm to compute steady flow over the three-dimensional
barriers under conditions of neutral and stable stratification.

Some results were given in [10] for unsteady flows using the kind of approach de-
scribed. That is, a steady problem is solved at each time step, with the flow at the previous
time step regarded as the initial condition for the flow at the new time step. The set of
changes in the solution sought at each time step consists of high-frequency information
and the multigrid algorithm is not expected to be as effective in the individual steps of an
unsteady computation as when employed to determine a steady state solution. The gains
obtained in [10] for the two-dimensional unsteady cases were indeed more modest than
those for the steady cases but were worthwhile nevertheless, and we include here some
results for three-dimensional unsteady cases at low and high Reynolds number for com-
parison.

The main application of the work described is the elucidation of the interaction of a
stratified fluid with a three-dimensional obstacle. This can be complex and can lead to an
extensive range of phenomena, such as lee-wave generation, wave breaking, and vortex
shedding. To simulate wave breaking in particular requires the use not only of viscous
equations but preferably of some kind of turbulence model. The turbulence model here is
taken to be a simple mixing length model which merely allows the Reynolds number to be
raised sufficiently for the phenomena to occur.

2. MATHEMATICAL MODEL

Equations of Motion

Here we are interested in the flow of a stably stratified fluid of finite depthD with buoyancy
frequencyN and free-stream velocityU past isolated three-dimensional obstacles of height
h. This suffices as a simple model of atmospheric flow over arbitrary terrain, the behavior
of which is characterized by the value of the dimensionless parameterFh = U/Nh, the
Froude number. Employing the Boussinesq approximation, in which density variations are
neglected in the advection terms, the equations of motion describing unsteady turbulent
stratified flow in Cartesian coordinates are

Dui

Dt
= − ∂p

∂xi
− 1

F2
h

θ ẑ+ ∂

∂xj

{
1

Re

∂ui

∂xj
+ τi j

}
(1)

∂u j

∂xj
= 0 (2)

Dθ

Dt
= ∂

∂xj

{
1

Re· Pr

∂θ

∂xj
+ Hj

}
. (3)

Equation (1) represents conservation of momentum in each of the three coordinate direc-
tions, and (2) represents the continuity constraint. Equation (3) models the transport of the
density scalar defined byθ = D(ρ − ρo)/h1ρ, whereρ is the physical density and1ρ is
the magnitude of the density change over the nondimensional domain heightD/h. ẑ is the
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FIG. 1. Geometry of computational domain for three-dimensional flow past vertical barriers.

unit vector in the vertical direction. As in [10] the equations have been nondimensionalised
by combinations ofU, h, andρo.

Although much of the work described here is for laminar flow we conclude the paper
with a high Reynolds number flow, and for this reason we retain the Reynolds stress tensor
τi j and turbulent bouyancy fluxHj terms which are absent in the laminar case. Pr is the
turbulent Prandtl number, which is replaced by the Schmidt number Sc for laminar flows
and is taken to be 1000.

Computational Domain and Boundary Conditions

The computational domain considered for the three-dimensional computations in this
paper is illustrated in Fig. 1 and is somewhat akin to the experimental apparatus whereby
an inverted obstacle is towed through a water tank; see [28], for example. The test problem
for the Cartesian grid case is flow past a set of three vertical barriers of heighth (taken to
be unity) and increasing spanwise width ofh, 2h, and 4h. The paper also includes results
of computations over smooth obstacles, used for previous experimental [28] and numerical
[29] studies, of cross-sectional shape given byh(x) = 0.5[1+ cos(πx/1.8)] with the ends
formed by rotating the cross section through 180◦. The aspect ratios of the obstacles (defined
as the ratio of the distances between the spanwise and axial half-height points) are 1.0 (i.e.,
axisymmetric, COS1), 2.3 (COS2), and 3.7 (COS3). The grids in these cases are curvilinear
and the algorithm employs a boundary-conforming transformation to stretch the vertical
coordinate, which introduces volume scale factors and additional metric terms into the
transport equations. Details of this are given in the Appendix.

In all cases symmetry conditions are applied in the centre plane (y/h = 0) and the bottom
plane (z/h = 0). To be consistent with the experimental apparatus the boundary condition
along the top plane (z/h = D) is a moving wall, although for the far side plane (y/h = W)
this is relaxed to a symmetry condition. The boundary condition at inflow consists of uniform
flow (u, v, w) = (1, 0, 0) and a linear density variation for the stratified cases, while zero-
derivative conditions are applied to all variables at outflow. The initial condition for all
computations is uniform flow throughout the domain, and for the stratified cases a linearly
varying density profile. In all the Cartesian casesD = 5 andW = 8. If W is taken to be 5
and the narrowest obstacle is chosen, theny andz are interchangable, and in this case the
geometry is reduced to that considered by Hanazaki [30].
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Scope of the Study

In flow of finite depthD the main parameter of interest isK = N D/πU (K = D/πhFh),
the ratio of the velocity of the fastest internal wave mode to the free stream. Linear theory
predicts thatn (integer) sets of internal gravity waves will be present whenn < K ≤ n+ 1.
Accordingly, for 0< K ≤ 1 (weak stratification) no lee waves occur since they are all swept
downstream. ForK > 1 (strong stratification) lee waves can occur, and one set is predicted
when 1< K ≤ 2 and so on. In the case of weak stratification, the suppression of vertical
motion induced by the density gradient is manifested in the shortening of the separation
length behind a bluff obstacle and an accompanying drag reduction. These qualitative
features of the real turbulent flow, seen in laboratory experiments, can be reproduced in
laminar computations with an appropriate value chosen for the Reynolds number, say Re=
50 [28]. This was the value used for the earlier multigrid computations of steady two-
dimensional stratified flows [10, 24] and is used for the corresponding three-dimensional
flows described here.

While it is accepted that the flow is steady when 0< K ≤ 1, for K > 1, however, wave
propagation (upstream as well as downstream) means that the flow is unsteady and the time-
dependent equations should be solved. In this paper we include results of the computation of
unsteady flow over the set of vertical barriers at low Reynolds number (Re= 100) and over
the set of smooth obstacles at high Reynolds number (Re= 105). The turbulence model
used here is the extension of the mixing length model used in [10]. Although clearly lacking
the sophistication of models using transport equations for turbulence quantities or better,
it nevertheless enables high Reynolds number computations to be performed and is in fact
the same kind of model used in many inviscid codes which simulate atmospheric flow—see
[31], for example.

3. NUMERICAL METHOD

General

The discretization scheme used follows many of the standard practices of the finite volume
method. Integrating the transport equations (1) and (3) over a typical control volume, of
volume1V , the divergence theorem is applied to yield the usual discrete boundary integral

∑[(
uϕ−0∂ϕ

∂x

)
1Ayz+

(
vϕ−0∂ϕ

∂y

)
1Axz+

(
wϕ − 0∂ϕ

∂z

)
1Axy

]
= Sϕ1V, (4)

whereϕ is a typical variable. The summation is taken over the six faces of the control volume,
and1Ayz denotes the area of the cell face in they–z plane, etc. The grids are staggered ac-
cording to the usual arrangement of variables and associated control volumes. Although this
brings the usual geometrical complications, particularly in the three-dimensional case, no
additional stabilizing terms need be added to the continuity equation, unlike the correspond-
ing discretisation on collocated grids—see [32] for a recent review of the two approaches.
The convective and diffusive contributions from the six cell faces are collected so that (4)
can be expressed in the form

apϕp =
∑

amϕm + Sϕp, (5)
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where the summation is taken over the centres of the six neighbouring cells, and the multi-
plying coefficients contain the advective and diffusive flow rates. The source term includes
the second-order corrections from the advective scheme (see later), the pressure gradient
in the case of each momentum equation, and the buoyancy term in the case of the vertical
momentum equation.

For unsteady flows the time derivative is approximated using the unconditionally stable
second-order backward difference

3ϕn+1
p − 4ϕn

p + ϕn−1
p

21t
,

and inclusion merely amounts to minor changes to the diagonal coefficient and source term
of Eq. (5).

The finest grid on which a solution is required is defined at the outset, and a hierarchy of
grids is determined where the maximum numbers of lines on gridNg (Ng = 1 corresponds
to the finest grid) are IMAXNg, JMAXNg , and KMAXNg , in the x-, y-, andz-directions,
respectively. Efficient use of storage space is important in three-dimensional simulations and
all variables are stored in single-dimensional arrays which follow rows in thex-direction, so
that consecutive elements contain variables which are neighbours upstream and downstream
in general. The element at position (I , J, K ) on gridNg is addressed using a pointer system
of the form

M = I + (J − 1)× IMAX Ng + (K − 1)× IMAX Ng × JMAXNg + NGNg,

where NGNg is a summation term over the grids defined by

NG1 = 0, NGNg = NGNg−1 + IMAX Ng−1 × JMAXNg−1 × KMAX Ng−1, Ng > 1.

Although the method has been implemented only on serial machines, there is no reason in
principle why it should not run on a parallel machine, or a networked cluster of pcs, for
example. Work is under way with a Java-based version of the code to evaluate this latter
approach.

Smoothing Algorithm

Supposing that the discrete steady momentum equations are satisfied byu, v, w, p, and
θ , Eq. (5) takes the form for the six velocities associated with a continuity control volume
as

au
i−1/2 jkui−1/2 jk =

∑
au

mum + Au
i−1/2 jk(pi−1 jk − pi jk )+ Su

i−1/2 jk (6)

au
i+1/2 jkui+1/2 jk =

∑
au

mum + Au
i+1/2 jk(pi jk − pi+1 jk)+ Su

i+1/2 jk (7)

avi j−1/2kvi j−1/2k =
∑

avmvm + Avi j−1/2k(pi j−1k − pi jk )+ Svi j−1/2k (8)

avi j+1/2kvi j+1/2k =
∑

avmvm + Avi j+1/2k(pi jk − pi j+1k)+ Svi j+1/2k (9)

awi jk−1/2
wi jk−1/2 =

∑
awmwm + Awi jk−1/2

(pi jk−1− pi jk )+ Swi jk−1/2
(10)

awi jk+1/2
wi jk+1/2 =

∑
awmwm + Awi jk+1/2

(pi jk − pi jk+1)+ Swi jk+1/2
(11)
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where

Au
i−1/2 jk =

1Au
i−1/2 jk

1xu
i−1/2 jk

, etc.

The source terms have been multiplied by the volumes of respective control volumes and
the pressure gradient is shown explicitly. The discrete continuity equation is(

ui+1/2 jk − ui−1/2 jk

)
1Ax

i jk

+ (vi j+1/2k − vi j−1/2k

)
1Ay

i jk +
(
wi jk+1/2 − wi jk−1/2

)
1Az

i jk = 0. (12)

For stratified flow the density transport equation takes the form

aθi jkθi jk =
∑

aθmθm + Sθi jk , (13)

while the sources in the vertical momentum equation are modified to include the discrete
bouyancy term

1Awi jk−1/2

2F2
h

(θi jk−1+ θi jk ).

Decoupled Smoother (SIMPLE)

The SIMPLE pressure correction algorithm [5] is well known. The coefficients in each
of the discrete momentum equations (6)–(11) are calculated over the whole domain and
using the current pressure field the equations are solved globally in turn via an ADI sweep
to yield an updated velocity field. Coupling is then obtained between the local velocities
and pressures using relations derived from the discrete momentum equations. These are
substituted into the discrete continuity equation (12) (written terms of velocity corrections)
to derive a Poisson-type equation for the pressure corrections. The pressure correction
equation is solved (here using four ADI sweeps) to yield the pressure corrections, which
are used to update the pressure and the velocities. In the case of stratified flow the density
transport equation (13) is solved prior to the iteration being repeated.

Discretisation of Advective Term

The treatment of the advective terms is based on the assumption that the flow across cell
boundaries is one-dimensional in directions normal to the cell faces. Denoting the values
of the flow variable at the centres of consecutive cells byϕi−1, ϕi , andϕi+1, many schemes
exist to provide an estimate at the downwind cell face,ϕi+1/2. The general form of the
κ-scheme [33] provides a convenient representation,

ϕi+1/2 = 1

2
(ϕi + ϕi+1)+ 1− κ

4
(−ϕi−1+ 2ϕi − ϕi+1),

where several schemes are encompassed asκ ranges fromκ = −1 (second-order upwind)
to κ = 1 (central differencing). Monotonicity properties can be introduced by defining the
normalised variable [34]

ϕ̃ = ϕ − ϕi−1

ϕi+1− ϕi−1
.
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The monotonicity condition is that ˜ϕi ≤ ϕ̃i+1/2 ≤ 1 whenever 0≤ ϕ̃i ≤ 1, and it is well
known that theκ-scheme as it stands fails to fulfill this for any value ofκ. The scheme may
be made nonlinear, so that

ϕ̃i+1/2 = f (ϕ̃i ),

where f is a limiter function introduced to ensure monotonicity, for example, the cubic
polynomials defined by Wesselinget al. [35].

These ideas are entirely parallel to the TVD [36] framework, where the corresponding
formulation is

ϕi+1/2 = ϕi + 1

2
9(R)(ϕi − ϕi−1),

whereR is the ratio of the successive slopes

R= ϕi+1− ϕi

ϕi − ϕi−1

and9 is a limiter function. SinceR and the normalised variable ˜ϕi are related through
R+ 1= 1/ϕ̃i the TVD scheme can be written in terms of normalised variables as

ϕ̃i+1/2 = ϕ̃i

(
1+ 1

2
9

)
.

Thus for any limiter function9 there is a functionf , so that the harmonic limiter [37]

9(R) = (|R| + R)/(R+ 1)

is equivalent to the functionf (ϕ̃i ) = ϕ̃i (2− ϕ̃i ), while the van Albada limiter [38]

9(R) = (R2+ R)/(R2+ 1)

is equivalent tof (ϕ̃i ) = (4ϕ̃3
i − 5ϕ̃2

i + 3ϕ̃i )/(4ϕ̃2
i − 4ϕ̃i + 2). The TVD region and these

limiter functions are illustrated in the normalised variable diagram in Fig. 2, along with the

FIG. 2. Monotonic region for advective schemes.
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piecewise linear function corresponding to the combination of second-order upwinding and
central differencing given by

f (ϕ̃i ) =
{

3ϕ̃i /2 when 0≤ ϕ̃i ≤ 1/2,

(ϕ̃i + 1)/2 when 1/2< ϕ̃i ≤ 1.

It has been shown previously [17] that the particular type of limiter can affect the convergence
rate of a multigrid iteration, and similar behavior is found here. Although complex to analyse
in any detail, it can be seen from the form of the coarse grid equation for nonlinear operators
that difficulties might be anticipated. For any of the transported variables the general coarse
grid equation (the counterpart to (5)) can be expressed as

a2hϕ2h −
∑

a2hϕ2h = Sϕ2h +
{

a2hϕ̃2h −
∑

a2hϕ̃2h − Sϕ̃2h

}
+ I 2h

h Rϕh . (14)

The first term on the right-hand side is the source term for the current coarse grid approxi-
mationϕ2h, the term in curly brackets is evaluated from the restricted solution ˜ϕ2h, while the
last term represents the restricted fine grid residuals. In addition to the pressure gradient and
bouyancy term in the case of the momentum equations, the source termsSϕ2h andSϕ̃2h contain
the high-order part of the convective discretisation and when flux limiters are implemented
these are the nonlinear functions outlined above. If the coefficients in (14) are held fixed,
then we have

a2hϕ
′
2h −

∑
a2hϕ

′
2h = Sϕ2h − Sϕ̃2h + I 2h

h Rϕh ,

whereϕ′2h = ϕ2h − ϕ̃2h. When the source terms are linear functions of the discrete variables,
convergence of the fine grid residuals implies that the coarse grid iteration will result in
convergence to zero of the coarse grid corrections; i.e.,Rϕh → 0 impliesϕ′2h → 0. However,
when the source terms are nonlinear functions of the discrete variables, this need no longer
be the case, and the guarantee of convergence would appear to be lost. This is certainly
consistent with some of the numerical experiments described later, when convergence dif-
ficulties are found with the harmonic and van Albada limiters but convergence is restored
with the use of the piecewise linear limiter.

Underrelaxation

Underrelaxation is vital for convergent iteration. Typical values of the underrelaxation
factors for the momentum equations for neutral flow are similar in three dimensions to those
used in two, say 0.7. The pressure correction equation itself is not underrelaxed, but only
a fraction, say 0.5, of the resulting pressure corrections is added to the current pressure
field.

For stratified flow a grid-dependent strategy was adopted. The underrelaxation factors
required to solve the coarse grid transport equations on the coarsest grid were found to
be smaller than those for all other grids, where the iteration only smoothes the solution,
and the factors required for thew-momentum and the density equations were smallest of
all. However, it was found that increasing the fraction of the pressure changes added, even
to unity, improved the rate of convergence as stratification increased. Clearly there is no
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TABLE I

Underrelaxation Factors for Steady Computations

Fh/K Umom Vmom Wmom Pressure Density

∞/0.0 0.7 0.7 0.7 0.5 —
0.7 0.7 0.7 0.5 —

3.180/0.5 0.7 0.7 0.7 0.7 0.9
0.6 0.6 0.4 0.7 0.4

1.989/0.8 0.6 0.6 0.6 1.0 0.6
0.4 0.4 0.2 1.0 0.2

1.592/1.0 0.4 0.4 0.4 1.0 0.4
0.4 0.4 0.2 1.0 0.2

1.224/1.3 0.3 0.3 0.3 1.0 0.3
0.3 0.3 0.15 1.0 0.2

Note.The lower line in each case applies to the coarsest
grid, the upper line to all other grids.

theoretical guidance here, and optimal strategies are found by trial and error. Typical values
used are given in Table I.

Multigrid Implementation

The multigrid implementation follows standard procedures outlined in many places—
see [23] for general discussion and [10, 27] for discussion specific to the applications
described here. Restriction of flow variables is carried out using means of nearest neighbors,
weighted according to cell areas in the case of the velocities to preserve mass fluxes. For
non-Cartesian grids the procedure requires modification taking into account the coordinate
transformation—see [10] for one approach. Restriction of residuals is by summation to
preserve integrals, with all residuals reevaluated prior to restriction. Prolongation is by
trilinear interpolation, with care taken around the vertical barrier when present. The cycling
algorithm usesW cycles with up to four grid levels with one pre- and one post-smoothing
iteration on each, except the coarsest where the equations are solved with 10 iterations.

Multigrid convergence rates are dependent on the extent of ellipticity in the discrete
equations and this decreases as diffusive parameters increase. The density equation here
has a smaller diffusive parameter than the momentum equations, and this equation may be
solved a number of times (typically three times)—corresponding to increasing the number
of pre- and post-smoothing iterations. This avoids the convergence of the whole multigrid
process being excessively delayed by one otherwise slowly converging component.

4. RESULTS AND DISCUSSION

Steady Two-Dimensional Flow

We describe the results of computations performed with various limiter functions for low
Reynolds number (Re= 50) flow over the two-dimensional vertical barrier described in
[10]. The same grid arrangements are used as in that study, with the finest grid comprising
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FIG. 3. Streamlines for flow over two-dimensional vertical barrier with (a)Fh = ∞, K = 0 (neutral flow),
(b) Fh = 3.180, K = 0.5, (c) Fh = 1.989, K = 0.8, (d) Fh = 1.592, K = 1.0, and (e)Fh = 1.224, K = 1.3.

320× 80 continuity control volumes, enabling 5 grid levels to be defined with the coars-
est containing 20× 5 continuity control volumes. The grids employ nonuniform spac-
ing and the minimum grid spacing in each direction (at the barrier tip) is 0.1 h. Stream-
line plots for the five cases (a)Fh = ∞, K = 0 (neutral flow), (b)Fh = 3.180, K = 0.5,
(c) Fh = 1.989, K = 0.8, (d) Fh = 1.592, K = 1.0, and (e) Fh = 1.224, K = 1.3 are
shown in Fig. 3. These plots demonstrate the characteristic shortening of the recircula-
tion zone forK ≤ 1 and the appearance of downstream lee waves forK > 1.

For the neutral case the second-order schemes converged largely in unison to a certain
tolerance level, and although differences in asymptotic rate occurred thereafter, all schemes
produced acceptable results. The limited schemes converged somewhat more slowly than
the second-order upwind scheme, with the piecewise linear scheme performing the least
well. The asymptotic rate of the second-order upwind scheme was at least as good as
the first-order upwind scheme. The convergence of the separation length with respect to
grid refinement is illustrated in Fig. 4, where this quantity is plotted against the square
of the grid spacing at the barrier tip. Only the second-order upwind scheme gave a fully
convincing demonstration of second-order accuracy, while the limited schemes produce
results which are close to each other, but appear to be contaminated with some first-order
behavior, shown to its fullest extent by the first-order scheme. Degradation of accuracy of
high-order nonlinear schemes is known to occur downstream of captured shock waves in
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FIG. 4. Variation of separation length with grid refinement for various advection schemes.

multidimensional flows [40, 41], although in the smooth regions of the flow design order
of accuracy is still achieved, contrasting with the results presented here.

Consider next the case withFh = 3.180, K = 0.5 shown in Fig. 3b. While superficially
only little different from the neutral case, the presence of the density transport equation,
which is strongly dominated by convection when Sc= 1000, has a major impact on the
asymptotic convergence rate. Computations were performed with the harmonic limiter
for the momentum equations and five different schemes applied to the density transport
equation. The only combination to produce good asymptotic convergence was that with
the first-order upwind scheme on the density equation. In this case, high levels of diffusion
spuriously boost the ellipticity in the discretisation. This occurs to a much lesser extent for
the second-order schemes resulting in slowed convergence. Smoothing rates can generally
be improved, however, by increasing the number of pre- and post-smoothing iterations.
Experiments with the piecewise linear scheme on the density equation and an increasing
number of pre- and post-smoothing iterations demonstrated greatly improved convergence
rates. Of course, the additional iterations increase the expense of the computation, and in
terms of computing time three pre- and post-smoothing iterations were found to be optimal.
However, not all the limiters applied to the density equation responded in this way, and
in fact the piecewise linear limiter was the only one of the three to do so, as illustrated in
Fig. 5, where the usual definition of the residual norm

R=
[∑

(Ru)2+∑(Rw)2+∑(Rc)2+∑(Rθ )2
4× IMAX Ng × KMAX Ng

]1/2

,

is plotted after each multigrid cycle. The convergence histories of computations with all
the limited schemes demonstrate the poor convergence properties of the harmonic and van
Albada limiters when applied to the density equation. Although further work is required
to fully understand the nature of the failure to converge, this is currently attributed to the
nonlinearity of the limiter functions undermining the convergence of the multigrid process
as outlined earlier.
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FIG. 5. Convergence histories for various schemes applied to the density equation with three pre- and post-
smoothing iterations (Fh = 3.180, K = 0.5).

With the convergence characteristics thus improved from the work in [10, 24] the al-
gorithm was used to compute the other stratified cases shown in Fig. 3. The case with
Fh = 1.224, K = 1.3 (Fig. 3e) is difficult to compute, partly because of the upstream dis-
turbance and partly because the flow field in any case does not appear to be steady. Previous
attempts with the harmonic limiter on the density equation produced only a divergent
iteration, although with the piecewise linear limiter a slowly convergent iteration can be
achieved. However, it was found for this case that the use of the harmonic limiter on the
velocities did not achieve a convergent iteration on all the grids attempted, but the use of the
piecewise linear limiter on all variables did. The convergence difficulties for this case com-
pared with the others are illustrated in Fig. 6, where the histories for all these computations
on a 160× 40 grid are shown.

Steady Neutral Three-Dimensional Flow

Prior to the description of the corresponding three-dimensional stratified cases we turn
now to the computation of three-dimensional neutral flow at the same Reynolds number,

FIG. 6. Variation in convergence rate with increasing density stratification for two-dimensional flow.
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FIG. 7. Streamlines for neutral flow past three-dimensional obstacles with (a)w/h = 1, (b)w/h = 2, and
(c)w/h = 4.

Re= 50. The grid spacings in thex- andz-directions for the three-dimensional compu-
tations correspond to those of the two-dimensional grid containing 160× 40 cells, while
the spacings in they-direction are similar to those in thez-direction. The finest grid used
here thus contains 160× 40× 40 cells from which three other grids are defined contain-
ing 80× 20× 20, 40× 10× 10, and 20× 5× 5 cells. Multigrid computations have been
performed with the harmonic limiter on grids of sizes 40× 10× 10, 80× 20× 20, and
160× 40× 40 permitting two, three, and four grid levels, respectively.

Streamlines originating upstream in the centre plane (y/h = 0) and the bottom plane
(z/h = 0) are shown in Fig. 7 for computations on the finest grid and should be compared
with Fig. 3a for the corresponding flow over the infinite width obstacle. As anticipated from
the geometry, the wake flow for the narrowest barrier is virtuallyy–z symmetric, while for
the two wider obstacles it clearly is not. Spanwise recirculation dominates in these cases,
displacing the flow in the centre plane vertically upwards. Examination of the separation
lengths and the drag values for these flows shows that both quantities increase with barrier
width as expected, with the convergence behavior being achieved similar to that observed
in the two-dimensional case.

The performance of the decoupled algorithm SIMPLE is summarised in Table II, which
gives the number of multigrid cycles and computing times required to achieve a converged
solution of the flow past each obstacle on the three grids, as well as the corresponding two-
dimensional case. Convergence here is monitored using sums of absolute values of residuals
over the entire domain and a computation is deemed to have converged when the maximum
sum over the four equations falls below 10−4. The computing times given are for double
precision arithmetic on a Silicon Graphics Indigo workstation. It is seen that the timings for
the three-dimensional computations are approximately those anticipated by extrapolation
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TABLE II

Numbers of Multigrid Cycles and Computing Times with

the SIMPLE Method for Neutral Flow, Fh =∞, K = 0.0

Aspect ratio/grid 40× 10× 10 80× 20× 20 160× 40× 40

1 14 (31.0 s) 13 (3 m 16 s) 11 (26 m 16 s)
2 18 (39.2 s) 15 (3 m 58 s) 13 (31 m 3 s)
4 18 (39.2 s) 18 (4 m 51 s) 16 (38 m 12 s)

∞ (2D) 19 (1.9 s) 14 (5.0 s) 13 (18.5 s)

from the two-dimensional results (multiplication by 9/4 times the number of spanwise grid
planes). The results for the computation on each grid indicate only minor variation with
obstacle width, and for each obstacle the number of cycles exhibits a good degree of grid
independence (the number of cycles actually reduces slightly with grid refinement). The
consequence is that computing times increase by a factor of approximately 8 when the
number of cells is doubled in each direction. As an indication of the amount of work being
saved the computation for the narrowest obstacle on the finest grid took around 25 times as
long to achieve the same level of convergence—the factor for the wider obstacles is likely
to be greater. This compares with speedup factors of around 9 for the computation of the
corresponding two-dimensional flow on the 160× 40 grid and 29 on the 320× 80 grid [10].
Asymptotic convergence rates for the decoupled algorithm are shown in Fig. 8. Shown for
comparison is the convergence rate of the corresponding computation on a 160× 40 grid,
from which it is clear that the asymptotic rates deteriorate significantly with the addition
of the third dimension. This contrasts with the behavior for the two- and three-dimensional
driven cavities [27], where the asymptotic rates were very similar for all Reynolds numbers
tried (up to 1000).

Steady Stratified Three-Dimensional Flow

Computations of three-dimensional stratified flow have been performed for the three ob-
stacles for the same values of the stratification as for the two-dimensional cases discussed

FIG. 8. Convergence histories for neutral flow past obstacles with the SIMPLE smoother.
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FIG. 9. Streamlines for stratified flow (Fh = 3.180, K = 0.5) past three-dimensional obstacles with (a)
w/h = 1, (b)w/h = 2, and (c)w/h = 4.

earlier, namelyFh = 3.180(K = 0.5), Fh = 1.989(K = 0.8), Fh = 1.592(K = 1.0), and
Fh = 1.224 (K = 1.3). In each case the piecewise linear limiter was used for the den-
sity equation, with three pre- and post-smoothing iterations. Unlike the two-dimensional
stratified cases, the underrelaxation factors now had to be dependent on both the grid
and the level of stratification as described above and in Table I. Streamline plots for
Fh = 3.180(K = 0.5) and Fh = 1.224(K = 1.3) are shown in Figs. 9 and 10, respec-
tively, to be compared with the corresponding two-dimensional cases in Fig. 3, and the
multigrid performances are given in Tables III and IV.

The effects of the stratification on the wake flow compared with the neutral case increase
with obstacle width, as seen in the streamline plots in Fig. 9. The reaction to the vertical
restoring force in thex–z plane appears to be minimal for the narrowest barrier, while for
the widest it produces dramatic change. For all three obstacles, however, there is clear evi-
dence of streamline overshoot, which is quite absent for the corresponding two-dimensional
case (Fig. 3b). The streamlines in thex–y plane also demonstrate profound differences from
the neutral case (Fig. 7), for the downward force now competes with spanwise recirculation
as the major influence determining the wake flow.

The general effects of the stratification are more pronounced forFh = 1.989, K = 0.8.
Although linear theory predicts no lee waves whileK < 1, and they do not occur in the two-
dimensional case (Fig. 3c), wave structures are apparent for each of the three-dimensional
cases (also noted in [30]), with the amplitude increasing with increasing obstacle width.
The caseFh = 1.592(K = 1.0) shows further evidence of lee waves, with still none in the
two-dimensional case (Fig. 3d). Lee waves occur for all obstacles atFh = 1.224(K = 1.3)
(Fig. 10), where the trends of increasing amplitude with obstacle width, as well as increasing
wavelength, are observed.
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TABLE III

Numbers of Multigrid Cycles and Computing Times

for Stratified Flow, Fh = 3.182, K = 0.5

Aspect ratio/grid 40× 10× 10 80× 20× 20 160× 40× 40

1 15 (1 m 1 s) 14 (5 m 39 s) 16 (66 m 40 s)
2 19 (1 m 12 s) 16 (6 m 32 s) 16 (66 m 40 s)
4 22 (1 m 20 s) 21 (8 m 34 s) 19 (79 m 10 s)

∞ (2D) 16 (3.0 s) 15 (11.7 s) 17 (46.0 s)

TABLE IV

Numbers of Multigrid Cycles and Computing Times

for Stratified Flow, Fh = 1.224, K = 1.3

Aspect ratio/grid 40× 10× 10 80× 20× 20 160× 40× 40

1 40 (2 m 32 s) 43 (17 m 32 s) 65 (273 m 10 s)
2 47 (2 m 49 s) 53 (21 m 43 s) 69 (289 m 51 s)
4 55 (3 m 23 s) 65 (27 m 07 s) 81 (340 m 23 s)

∞ (2D) 35 (6.4 s) 30 (21.4) 73 (3 m 17 s)

FIG. 10. Streamlines for stratified flow (Fh = 1.224, K = 1.3) past three-dimensional obstacles with
(a)w/h = 1, (b)w/h = 2, (c)w/h = 4.
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FIG. 11. Convergence histories for stratified flow (Fh = 3.180, K = 0.5) past the narrowest obstacle.

The convergence data in Tables III and IV show that the time per cycle has increased by
approximately 70% in comparison with the neutral case, accounted for by the additional
work of solving the density equation three times. In fact this could be reduced, for it is only
the nonlinear source terms which need be reevaluated, not the entire set of left-hand-side
coefficients as currently implemented. The number of multigrid cycles required to achieve
convergence is always greater than that for the neutral case, as expected, and as in the neutral
case this number increases with obstacle width for each value of the Froude number tried.
The number of cycles required also increases with the level of stratification, although for
K = 0.5 andK = 0.8 this is largely grid independent. ForK = 1.0 andK = 1.3, on the
other hand, the number of cycles rises with grid refinement, so that the total amount of work
required on the finest grid for the widest obstacle withK = 1.3 is approximately four times
that required for the narrowest obstacle withK = 0.5.

Figure 11 shows the convergence histories with grid refinement for the first stratified case,
Fh = 3.180, K = 0.5, for the narrowest obstacle. In this instance all three schemes used for
the momentum equations produced convergent iterations. However, as noted previously for
one of the two-dimensional cases, it was also found here that the limiter used for the velocities
could influence whether or not a particular case converged. Although the piecewise linear
limiter generally proved more robust than the harmonic, it did not always produce asymptotic
convergence, and the second-order upwind scheme had to be used instead. For the caseFh =
1.989, K = 0.8, for example, the piecewise linear limiter leads to a convergent iteration
for the wider obstacles, but not the narrowest. As in the two-dimensional computations, the
asymptotic convergence rates fall with increasing stratification, and Fig. 12 demonstrates
this for each of the five computations of flow past the narrowest obstacle. The general
deterioration in convergence rates compared with the two-dimensional cases is clear from
comparison with Fig. 6.

The variation in pressure drag and separation length for each of the four barriers has been
analysed. In all cases both quantities fall asK increases from zero to unity, consistent with
previous observations [10, 28, 30]. Although it was noted that wave structures are present
when K = 0.8 for the three-dimensional flows, the drag continues to fall for this value,
and the expected sharp increase in drag associated with the production of lee waves does
not actually occur untilK > 1. The separation length, on the other hand, does continue to
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FIG. 12. Variation in convergence rate with increasing density stratification for three-dimensional flow.

fall and for both quantities the effects generally increase with obstacle width. The lee-wave
wavelengths for the two-dimensional flows have been found previously to follow the finite
depth limit,λ = 2D/(K 2− 1)

1/2, while those appearing in the three-dimensional flows are
shorter, with the wavelength shortening with obstacle width, so that the lee waves produced
by the narrowest obstacle are much closer to the infinite depth limit,λ = 2πhFh = 2D/K .

Unsteady Stratified Three-Dimensional Flow

Having demonstrated the capability of convergent multigrid iteration for steady three-
dimensional stratified flows, we turn finally to time-dependent cases. The time-stepping
is achieved via the second-order backward formula given earlier and tests confirm that
the present algorithm converges in a second-order manner in time. Some indication of the
benefit of using multigrid for unsteady computations was given in [10] for two-dimensional
flows, where computations of unsteady flow over the vertical barrier were performed at low
Reynolds number and with a mixing length turbulence model at high Reynolds number.
Modest gains were demonstrated, which increased with the size of time step, and here we
extend the study to include three-dimensional unsteady cases and present two sets of results
for comparison.

The first is for laminar flow (Re= 100) past the set of three-dimensional vertical bar-
riers in a channel of heightD/h = 5 already described, for whichFh = 1.061, K = 1.5.
This case demonstrates the periodic unsteadiness found in laboratory experiments [28] and
numerical simulations [30, 42] and subsequently explained in terms of a wave mode with
stationary group velocity [43]. To allow for wave propagation upstream and downstream
the grid was extended to cover−100≤ x/h ≤ 100 and the grid sizes used increased to
50× 10× 10, 100× 20× 20, and 200× 40× 40. According to estimates based on lin-
ear theory this enables computation up to a nondimensional time ofUt/h = 240 before
wave reflections are due back at the barrier. As in [10] computations are performed up to
Ut/h = 200 with each of the three barriers on each of the three grids and with two time
steps,U1t/h = 2.0 andU1t/h = 1.0. There is now no need to obtain an asymptotically
converged solution at each time step and for all cases the convergence criterion before ad-
vancing to the next is that the maximum sum of the absolute values of residuals over each
of the five equations reaches 5× 10−4. (An additional consequence of practical benefit is
that the computations can now be adequately performed in single precision arithmetic.)
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TABLE V

Numbers of Multigrid Cycles, Computing Times, and

Speedup Factors for Unsteady Stratified Flow past Widest

Barrier, Fh = 1.061,K = 1.5, and Re = 100

U1t/h 50× 10× 10 100× 20× 20 200× 40× 40

2.0 5 (11.9 s, 1.5) 6 (2 m 7 s,3.4) 7 (21m 45 s, 6.7)
1.0 4 (8.8 s, 1.5) 5 (1 m 46 s, 2.4) 5 (16 m 15 s, 5.2)

FIG. 13. Variation in normalised drag for unsteady flow past the two-dimensional and the three three-
dimensional barriers withFh = 1.062, K = 1.5, and Re= 100.

FIG. 14. Instantaneous streamlines atUt/h = 20 for unsteady flow past the widest three-dimensional cosine-
shaped obstacle (w/h = 3.7) with Fh = 0.7, K = 4.55, and Re= 100,000.
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TABLE VI

Numbers of Multigrid Cycles, Computing Times, and Speedup

Factors for Unsteady Stratified Flow past Cosine-Shaped Obstacles,

Fh = 0.7, K = 4.55, and Re = 100,000

U1t/h COS1 COS2 COS3

1.0 7 (43 m, 3.3) 8 (49 m, 5.3) 10 (61 m, 5.8)
0.5 4 (24 m, 1.8) 5 (30 m, 2.1) 5 (30 m, 2.3)

Figure 13 shows the drag oscillation for each of the barriers, which increases in amplitude
with barrier width, compared with the two-dimensional case. The variation in the wave
amplitude is so large in the two-dimensional case that wave breaking is seen in the wave
troughs, although none was observed in any of the three-dimensional cases at this Reynolds
number. The results of the multigrid performance are summarised in Table V for the widest
of the three barriers where grid-independent convergence is obtained. The gains from the
multigrid compare well with the corresponding factors of 6.7 and 4.6 on two-dimensional
grids of size 400× 80 with the same two sizes of the time step.

The second case demonstrated is high Reynolds number flow past the set of three
smooth cosine-shaped obstacles described earlier. The computations described here were
undertaken withFh = 0.7 and realism was enhanced by increasing the domain height to
D/h = 10 (so thatK = 4.55). The finest grid contained 160× 40× 40 cells and covered
−50≤ x/h ≤ 25, 0≤ y/h ≤ 8, and 0≤ z/h ≤ 10, with the upstream boundary suffi-
ciently far away to allow computation up until approximatelyUt/h = 23 before reflections
return to the region of interest. The Reynolds number is taken to be Re= 105 and mixing
length turbulence model mentioned in the Introduction is used.

The interaction of a density-stratified fluid with a smooth three-dimensional obstacle is
complex, with precise behavior determined by the value of the Froude number and the
obstacle shape. Amplitudes of downstream lee waves generally increase with spanwise
obstacle width, and the effect of the obstacle width on the occurrence of wave breaking at
this Froude number is shown in Fig. 14, where streamlines in the centre and bottom planes
are plotted for the widest obstacle atUt/h = 20. The amplitude over the two narrower
obstacle is too small for wave-breaking to occur, and these qualitative features agree with
experimental data [44]. The multigrid convergence data are summarised in Table VI for the
computations on the finest grid with each obstacle. As in the steady cases the amount of
work required increases with obstacle width, and although the speedup factors are less than
those for the unsteady laminar case discussed above, they are still worthwhile, particularly
for the larger time step.

5. CONCLUSIONS

The equations arising from a staggered grid finite volume discretisation of the Navier–
Stokes equations have been solved using a multigrid method. A variety of flow conditions
in two and three dimensions have been considered, including neutral and stable density
stratification, steady and unsteady flow, low and high Reynolds number, and Cartesian or
curvilinear geometry, and examples have been given demonstrating the range of capability
of the algorithm.
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The asymptotic convergence rate of the multigrid process when used to compute steady
stratified flow has been found to depend on the nature of the flux limiter used for the density,
when this equation is convection-dominated, and occasionally the velocities also. For the
cases and parameters tried a piecewise linear limiter function performed much better than
fully nonlinear limiters. Although further work is perhaps required to fully resolve the issue,
this is currently attributed to the presence of the high-order terms in the right-hand side of
the coarse grid equations which remove the guarantee of convergence when these terms are
nonlinear.

The implementation of the multigrid algorithm has been extended to deal with flows past
three-dimensional obstacles and has been demonstrated in the computation of neutral and
stably stratified flow past a set of vertical barriers of increasing width. The search for the
most efficient solver for three-dimensional flows is an important issue, however, and future
work should include comparisons with other smoothers such as DGS [21], more recent line
smoothers [17], and genuine planewise smoothers.

The SIMPLE smoother was used to compute steady flow over the vertical barriers under
conditions of increasing density stratification, when for weakly stratified flow (K < 1) the
separation length and obstacle drag decreased in accordance with experimental observa-
tions. For these cases a grid-dependent underrelaxation strategy was adopted, where smaller
underrelaxation factors were required when solving the equations on the coarsest grid than
when merely smoothing the solution on the other grids in the sequence. The amount of
work required to solve the problem generally increased with increasing stratification and
obstacle width.

Finally, some indications have been given regarding the effectiveness of the multigrid
algorithm when used to simulate three-dimensional unsteady flows under conditions of
strong stratification (K > 1). Results of the computation on the finest grid of laminar flow
over the vertical barriers suggest significant speedup factors over the corresponding single-
grid computation case, although these tend to be smaller in the case of high Reynolds number
flow over smooth topography. Initial results are encouraging, however, and warrant further
investigation. It already appears clear that the study of unsteady phenomena associated
with incompressible density-stratified flow past three-dimensional obstacles, such as wave
breaking and vortex shedding, could be undertaken with the reasonable expectation that the
multigrid algorithm would contribute a useful reduction in the computing time required;
see [45], for example.

APPENDIX

The mapping from Cartesian (x, y, z) to curvilinear coordinates (ξ, η, ζ ) is Clark’s [46]
terrain-following transformation and used in Apsley [47], for example. For a domain of
depthD and a lower surface given byzs(x, y) we have

ξ = x

η = y

ζ = z− zs(x, y)

1− zs(x, y)/D
.
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Derivatives transform according to

∂

∂x
= ∂

∂ξ
− cx√

g

∂

∂ζ

∂

∂y
= ∂

∂η
− cy√

g

∂

∂ζ

∂

∂z
= 1√

g

∂

∂ζ
,

where the Jacobian
√

g and the two metric coefficientscx, cy are respectively given by

√
g = 1− zs/D

cx = 1√
g
(1− ζ/D)

∂zs

∂x

cy = 1√
g
(1− ζ/D)

∂zs

∂y
.

Each of the equations for momentum (1) or density transport (3) can be written in generic
conservation form as

∂

∂t
(ϕ)+ ∂

∂x

(
uϕ − 0∂ϕ

∂x

)
+ ∂

∂y

(
vϕ − 0∂ϕ

∂y

)
+ ∂

∂z

(
wϕ − 0∂ϕ

∂z

)
= S,

whereS is a source term. Under the coordinate transformation this becomes

∂

∂t
(
√

gϕ)+ ∂

∂ξ

[√
guϕ −√g0

∂ϕ

∂ξ
+ cx0

∂ϕ

∂ζ

]
+ ∂

∂η

[√
gvϕ −√g0

∂ϕ

∂η
+ cy0

∂ϕ

∂ζ

]

+ ∂

∂ζ

[
(w − cxu− cyv)ϕ −

1+ c2
x + c2

y√
g

0
∂ϕ

∂ζ
+ cx0

∂ϕ

∂ξ
+ cy0

∂ϕ

∂η

]
= √gS.

The discretisation of either of these leads to an equation of the form of (5). In each case the
source term contains the pressure gradient, the buoyancy term if present, and the high-order
part of the convective scheme. When the coordinate transformation is used, the discrete form
of the mixed derivatives and additional pressure gradient terms are included in addition.
The expanded forms in either case are those given by expressions (6)–(11).

The continuity equation (2) becomes

∂

∂ξ
(
√

gu)+ ∂

∂η
(
√

gv)+ ∂

∂ζ
(w − cxu− cyv) = 0.

For the SIMPLE method this is rewritten in terms of corrections to the velocities stored on
the six faces which define a continuity control volume, with the current continuity residual
on the right-hand side. The discrete equation is of the form(

u′i+1/2 jk − u′i−1/2 jk

)√
g1Aξi jk

+ (v′i j+1/2k − v′i j−1/2k

)√
g1Aηi jk +

(
w′i jk+1/2

− w′i jk−1/2

)
1Aζi jk = −Rc

i jk .
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Truncated expressions for the velocity correction derived from the momentum equations
(6)–(11) are substituted to derive a Poisson equation in the usual way.
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